Programme	B.Sc. (Engg.) Energy Engineering	Course Code	NS 112	Credit Hours	2 + 1 = 3	
Course Title	Applied Physics					
Course Introduction						
This course bridges the gap between theoretical physics and practical applications, covering key concepts in mechanics, electromagnetism, thermodynamics, and modern physics. You'll explore how these principles are applied in real-world technologies and systems, from renewable energy solutions to advanced materials and medical devices. Through a combination of theoretical study and hands-on experiments, this course aims to provide you with a robust understanding of the physical principles that underpin modern technological advancements.						
Mapped	SDG 9: Inc	lustry, Innovation,	and Infras	structure		
	Le	arning Outcomes				
 On the completion of the course, the students will: 1. Illustrate the mechanical phenomena used in science and engineering. (C2) 2. Interpret basic electric circuits used in science and engineering. (C2) 3. Examine the mechanical phenomena including straight line motion and simple harmonic motion along with their mathematical models. (P2) 						
	Course Content			ssignments/R	8	
Week 1	Unit 1: Force and Motion Motion along a straight line. Vectors. Position, velocity and acceleration Newton Law of Motion.			The teacher may assign home assignments/problem-based learning/reading materials/learning activity etc.		
Week 2	Force Friction Drag Force and terminal velocity					
Week 3	Unit 2: Mechanics Work and Energy Kinetic and Potential en Conservation of energy.					
Week 4	Linear momentum. Torque and angular momentum. Gravitation Equilibrium and elasticity					
Week 5	Unit 3: Electric Charge Introduction to electric charge Conductors and Insulators Coulomb's Law Charge is quantized Charge is conserved					
Week 6	Unit 4: Electric Fields Introduction to Electric A point charge in electric A dipole in electric field Electric Flux Gauss' Law and its App					

Week 7	Unit 5: Electric Potential Electric potential and Electric potential energy Potential due to a point charge		
Week 8	Potential due to group of charges Potential due to an electric dipole		
Week 9	Unit 6: Capacitance Introduction to capacitance Capacitors in parallel and series Energy stored in an electric field Dielectric		
Week 10	Unit 7: Magnetic Fields Introduction to magnetic fields What produce magnetic field The Hall effect		
Week 11	Week 11 Faraday s Law Phenomena of Mutual and Self Induction Magnetic force on a current carrying wire		
Week 12	Torque on a current loop Tutorial		
Week 13Unit 8: Circuits Introduction to electric circuits Pumping charges			
Week 14	Work, energy and EMF Series and Parallel combinations of resistors, capacitors and inductors Calculating the current in single loop circuit		
Week 15	Multi loop circuits		
Week 16	Working of the ammeter and voltmeter		
Textbooks and Reading Material			

Textbooks.

1. University Physics by Hugh D. Young and Roger A. Freedman, 14th Edition.

2. Fundamentals of Physics Extended by D. Halliday, R. Resnick, J. Walker. 10th edition.

3. Fundamentals of Electromagnetic Phenomenon by D. Corson & Lorrain.

4. Theraja, B.L. 2004. A Text Book of Electrical Technology. S. Chand & Co. Ltd. New Delhi, India

Teaching Learning Strategies

1. Lecturing

2. Written Assignments/Quiz

3. Report Writing

4. Presentations

Assignments: Types and Number with Calendar

Week	1	2	3	4	1	5	6	7	8
Activity	-	-	Quiz 1	-	-	-	-	Quiz 2	-
Week	9	10	1	1	12	13	14	15	16
WCCK		10	-	-					- •

The abovementioned schedule of assignments/quizzes/presentations is tentative. The schedule will be provided to the students at the start of semester.

Assessment

Sr. No.	Elements	Weightage	Details
1.	Midterm Assessment	35%	Written assessment at the mid-point of the semester. It is mostly in the form of a test, but owing to the nature of the course the teacher may assess their students based on term paper, research proposal development, field work, report writing, and viva-voce examination, etc.
2.	Sessional Assessment	25%	This assessment may include classroom participation, assignments, presentations, viva voce, attitude and behavior, hands-on-activities, short tests, projects, practical, reflections, readings, quizzes etc.
3.	Final Assessment	40%	Written assessment at the end of the semester. It is mostly in the form of a test, but owing to the nature of the course the teacher may assess their students based on term paper, research proposal development, field work, report writing, and viva-voce examination, etc.